pipelinex.extras.ops package¶
Subpackages¶
Submodules¶
pipelinex.extras.ops.allennlp_ops module¶
pipelinex.extras.ops.argparse_ops module¶
pipelinex.extras.ops.numpy_ops module¶
pipelinex.extras.ops.opencv_ops module¶
-
class
pipelinex.extras.ops.opencv_ops.
CvBGR2Gray
(*args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'cvtColor'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvBGR2HSV
(*args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'cvtColor'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvBilateralFilter
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'bilateralFilter'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvBlur
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'blur'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvBoxFilter
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'boxFilter'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvCanny
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'Canny'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvCvtColor
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'cvtColor'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvDictToDict
(**kwargs)[source]¶ Bases:
pipelinex.utils.DictToDict
-
module
= <module 'cv2' from '/home/docs/checkouts/readthedocs.org/user_builds/pipelinex/envs/latest/lib/python3.6/site-packages/cv2/__init__.py'>¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvDilate
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'dilate'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvEqualizeHist
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'equalizeHist'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvErode
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'erode'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvFilter2d
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'filter2D'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvGaussianBlur
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'GaussianBlur'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvHoughLinesP
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'HoughLinesP'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvLine
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'line'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvMedianBlur
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'medianBlur'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvResize
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
fn
= 'resize'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvSobel
(ddepth='CV_64F', **kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
__init__
(ddepth='CV_64F', **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fn
= 'Sobel'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
CvThreshold
(type='THRESH_BINARY', **kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.CvDictToDict
-
__init__
(type='THRESH_BINARY', **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fn
= 'threshold'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpAbs
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.NpDictToDict
-
fn
= 'abs'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpConcat
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.NpDictToDict
-
fn
= 'concatenate'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpDictToDict
(**kwargs)[source]¶ Bases:
pipelinex.utils.DictToDict
-
module
= <module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/pipelinex/envs/latest/lib/python3.6/site-packages/numpy/__init__.py'>¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpFullLike
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.NpDictToDict
-
fn
= 'full_like'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpMean
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.NpDictToDict
-
fn
= 'mean'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpOnesLike
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.NpDictToDict
-
fn
= 'ones_like'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpSqrt
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.NpDictToDict
-
fn
= 'sqrt'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpSquare
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.NpDictToDict
-
fn
= 'square'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpStack
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.NpDictToDict
-
fn
= 'stack'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpSum
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.NpDictToDict
-
fn
= 'sum'¶
-
-
class
pipelinex.extras.ops.opencv_ops.
NpZerosLike
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.opencv_ops.NpDictToDict
-
fn
= 'zeros_like'¶
-
pipelinex.extras.ops.pandas_ops module¶
-
class
pipelinex.extras.ops.pandas_ops.
DfAgg
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'agg'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfAggregate
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'aggregate'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfApply
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'apply'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfApplymap
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'applymap'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfAssignColumns
(names=None, name_fmt='{:03d}')[source]¶ Bases:
object
-
class
pipelinex.extras.ops.pandas_ops.
DfBaseTask
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
object
-
__init__
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
method
= None¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfConcat
(new_col_name=None, new_col_values=None, col_id=None, sort=False)[source]¶ Bases:
object
-
class
pipelinex.extras.ops.pandas_ops.
DfCondReplace
(flag, columns, value=nan, replace_if_flag=True, **kwargs)[source]¶ Bases:
object
-
class
pipelinex.extras.ops.pandas_ops.
DfDrop
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseMethod
-
method
= 'drop'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfDropDuplicates
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseMethod
-
method
= 'drop_duplicates'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfEval
(expr, parser='pandas', engine=None, truediv=True)[source]¶ Bases:
object
-
class
pipelinex.extras.ops.pandas_ops.
DfEwm
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'ewm'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfExpanding
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'expanding'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfFillna
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'fillna'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfFilter
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶
-
class
pipelinex.extras.ops.pandas_ops.
DfFilterCols
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶
-
class
pipelinex.extras.ops.pandas_ops.
DfFocusTransform
(focus, columns, groupby=None, keep_others=False, func='max', **kwargs)[source]¶ Bases:
object
-
class
pipelinex.extras.ops.pandas_ops.
DfGroupby
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseMethod
-
method
= 'groupby'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfHead
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'head'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfMap
(arg, prefix='', suffix='', **kwargs)[source]¶ Bases:
object
-
class
pipelinex.extras.ops.pandas_ops.
DfNgroup
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'ngroup'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfPipe
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'pipe'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfQuery
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseMethod
-
method
= 'query'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfRelative
(focus, columns, groupby=None)[source]¶ Bases:
object
-
class
pipelinex.extras.ops.pandas_ops.
DfRename
(index=None, columns=None, copy=True, level=None)[source]¶ Bases:
object
-
class
pipelinex.extras.ops.pandas_ops.
DfResample
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'resample'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfResetIndex
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseMethod
-
method
= 'reset_index'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfRolling
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'rolling'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfSelectDtypes
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseMethod
-
method
= 'select_dtypes'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfSetIndex
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseMethod
-
method
= 'set_index'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfShift
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'shift'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfSortValues
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseMethod
-
method
= 'sort_values'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfSpatialFeatures
(output='distance', coo_cols=['X', 'Y'], groupby=None, ord=None, unit_distance=1.0, affinity_scale=1.0, binary_affinity=False, min_affinity=1e-06, col_name_fmt='feat_{:03d}', keep_others=True, sort=True)[source]¶ Bases:
object
-
__init__
(output='distance', coo_cols=['X', 'Y'], groupby=None, ord=None, unit_distance=1.0, affinity_scale=1.0, binary_affinity=False, min_affinity=1e-06, col_name_fmt='feat_{:03d}', keep_others=True, sort=True)[source]¶ - Available values for output:
distance affinity laplacian eigenvalues eigenvectors n_connected
-
-
class
pipelinex.extras.ops.pandas_ops.
DfTail
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'tail'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
DfTransform
(groupby=None, columns=None, keep_others=False, method=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pandas_ops.DfBaseTask
-
method
= 'transform'¶
-
-
class
pipelinex.extras.ops.pandas_ops.
NestedDictToDf
(row_oriented=True, index_name='index', reset_index=True)[source]¶ Bases:
object
-
pipelinex.extras.ops.pandas_ops.
affinity_matrix
(coo_2darr, ord=None, unit_distance=1.0, affinity_scale=1.0, binary_affinity=False, min_affinity=1e-06, zero_diag=True)[source]¶
-
pipelinex.extras.ops.pandas_ops.
distance_to_affinity
(dist_2darr, unit_distance=1.0, affinity_scale=1.0, binary_affinity=False, min_affinity=1e-06)[source]¶
-
pipelinex.extras.ops.pandas_ops.
eigen
(a, return_values=True, values_as_square_matrix=False, return_vectors=False, sort=False)[source]¶
-
pipelinex.extras.ops.pandas_ops.
laplacian_eigen
(coo_2darr, return_values=True, return_vectors=False, ord=None, unit_distance=1.0, affinity_scale=1.0, binary_affinity=False, min_affinity=1e-06, sort=False)[source]¶
-
pipelinex.extras.ops.pandas_ops.
laplacian_matrix
(coo_2darr, ord=None, unit_distance=1.0, affinity_scale=1.0, binary_affinity=False, min_affinity=1e-06)[source]¶
pipelinex.extras.ops.pytorch_ops module¶
-
class
pipelinex.extras.ops.pytorch_ops.
CrossEntropyLoss2d
(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0)[source]¶ Bases:
torch.nn.modules.loss.CrossEntropyLoss
-
forward
(input, target)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
ignore_index
: int¶
-
label_smoothing
: float¶
-
class
pipelinex.extras.ops.pytorch_ops.
ModuleAvg
(*args: torch.nn.modules.module.Module)[source]¶ -
class
pipelinex.extras.ops.pytorch_ops.
ModuleAvg
(arg: OrderedDict[str, Module]) Bases:
pipelinex.extras.ops.pytorch_ops.ModuleListMerge
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
class
pipelinex.extras.ops.pytorch_ops.
ModuleBottleneck2d
(in_channels, out_channels, kernel_size=(1, 1), stride=(1, 1), mid_channels=None, batch_norm=None, activation=None, **kwargs)[source]¶ Bases:
torch.nn.modules.container.Sequential
-
class
pipelinex.extras.ops.pytorch_ops.
ModuleConcat
(*args: torch.nn.modules.module.Module)[source]¶ -
class
pipelinex.extras.ops.pytorch_ops.
ModuleConcat
(arg: OrderedDict[str, Module]) Bases:
pipelinex.extras.ops.pytorch_ops.ModuleListMerge
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
class
pipelinex.extras.ops.pytorch_ops.
ModuleConvWrap
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Bases:
torch.nn.modules.container.Sequential
-
__init__
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
core
= None¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
ModuleListMerge
(*args: torch.nn.modules.module.Module)[source]¶ -
class
pipelinex.extras.ops.pytorch_ops.
ModuleListMerge
(arg: OrderedDict[str, Module]) Bases:
torch.nn.modules.container.Sequential
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
class
pipelinex.extras.ops.pytorch_ops.
ModuleProd
(*args: torch.nn.modules.module.Module)[source]¶ -
class
pipelinex.extras.ops.pytorch_ops.
ModuleProd
(arg: OrderedDict[str, Module]) Bases:
pipelinex.extras.ops.pytorch_ops.ModuleListMerge
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
class
pipelinex.extras.ops.pytorch_ops.
ModuleSum
(*args: torch.nn.modules.module.Module)[source]¶ -
class
pipelinex.extras.ops.pytorch_ops.
ModuleSum
(arg: OrderedDict[str, Module]) Bases:
pipelinex.extras.ops.pytorch_ops.ModuleListMerge
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
class
pipelinex.extras.ops.pytorch_ops.
NLLoss
(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean')[source]¶ Bases:
torch.nn.modules.loss.NLLLoss
The negative likelihood loss. To compute Cross Entropy Loss, there are 3 options. NLLoss with torch.nn.Softmax torch.nn.NLLLoss with torch.nn.LogSoftmax torch.nn.CrossEntropyLoss
-
forward
(input, target)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
ignore_index
: int¶
-
class
pipelinex.extras.ops.pytorch_ops.
StatModule
(dim, keepdim=False)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(dim, keepdim=False)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
StepBinary
(size, desc=False, compare=None, dtype=None)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(size, desc=False, compare=None, dtype=None)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorAvgPool1d
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.ModuleConvWrap
-
core
¶ alias of
torch.nn.modules.pooling.AvgPool1d
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorAvgPool2d
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.ModuleConvWrap
-
core
¶ alias of
torch.nn.modules.pooling.AvgPool2d
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorAvgPool3d
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.ModuleConvWrap
-
core
¶ alias of
torch.nn.modules.pooling.AvgPool3d
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorClamp
(min=None, max=None)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(min=None, max=None)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorClampMax
(max=None)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(max=None)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorClampMin
(min=None)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(min=None)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorConstantLinear
(weight=1, bias=0)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(weight=1, bias=0)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorConv1d
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.ModuleConvWrap
-
core
¶ alias of
torch.nn.modules.conv.Conv1d
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorConv2d
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.ModuleConvWrap
-
core
¶ alias of
torch.nn.modules.conv.Conv2d
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorConv3d
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.ModuleConvWrap
-
core
¶ alias of
torch.nn.modules.conv.Conv3d
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorCumsum
(dim=1)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(dim=1)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorExp
[source]¶ Bases:
torch.nn.modules.module.Module
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorFlatten
[source]¶ Bases:
torch.nn.modules.module.Module
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorForward
(func=None)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(func=None)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalAvgPool1d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool1dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorMean
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalAvgPool2d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool2dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorMean
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalAvgPool3d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool3dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorMean
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalMaxPool1d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool1dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorMax
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalMaxPool2d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool2dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorMax
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalMaxPool3d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool3dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorMax
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalMinPool1d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool1dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorMin
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalMinPool2d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool2dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorMin
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalMinPool3d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool3dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorMin
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalRangePool1d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool1dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorRange
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalRangePool2d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool2dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorRange
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalRangePool3d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool3dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorRange
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalSumPool1d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool1dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorSum
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalSumPool2d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool2dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorSum
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorGlobalSumPool3d
(keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.Pool3dMixIn
,pipelinex.extras.ops.pytorch_ops.TensorSum
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorIdentity
[source]¶ Bases:
torch.nn.modules.module.Module
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorLog
[source]¶ Bases:
torch.nn.modules.module.Module
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorMax
(dim, keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.StatModule
,torch.nn.modules.module.Module
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorMaxPool1d
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.ModuleConvWrap
-
core
¶ alias of
torch.nn.modules.pooling.MaxPool1d
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorMaxPool2d
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.ModuleConvWrap
-
core
¶ alias of
torch.nn.modules.pooling.MaxPool2d
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorMaxPool3d
(batchnorm=None, activation=None, *args, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.ModuleConvWrap
-
core
¶ alias of
torch.nn.modules.pooling.MaxPool3d
-
training
: bool¶
-
-
class
pipelinex.extras.ops.pytorch_ops.
TensorMean
(dim, keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.StatModule
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorMin
(dim, keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.StatModule
,torch.nn.modules.module.Module
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorNearestPad
(lower=1, upper=1)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(lower=1, upper=1)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorProba
(dim=1)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(dim=1)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorRange
(dim, keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.StatModule
,torch.nn.modules.module.Module
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorSkip
[source]¶ Bases:
torch.nn.modules.module.Module
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorSlice
(start=0, end=None, step=1)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(start=0, end=None, step=1)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorSqueeze
(dim=None)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(dim=None)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorSum
(dim, keepdim=False)[source]¶ Bases:
pipelinex.extras.ops.pytorch_ops.StatModule
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
class
pipelinex.extras.ops.pytorch_ops.
TensorUnsqueeze
(dim)[source]¶ Bases:
torch.nn.modules.module.Module
-
__init__
(dim)[source]¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
forward
(input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
training
: bool¶
-
pipelinex.extras.ops.pytorch_ops.
setup_conv_params
(kernel_size=1, dilation=None, padding=None, stride=None, raise_error=False, *args, **kwargs)[source]¶
-
pipelinex.extras.ops.pytorch_ops.
step_binary
(input, output_size, compare=<built-in method ge of type object>)[source]¶
pipelinex.extras.ops.shap_ops module¶
pipelinex.extras.ops.skimage_ops module¶
-
class
pipelinex.extras.ops.skimage_ops.
SkimageMarkBoundaries
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.skimage_ops.SkimageSegmentationDictToDict
-
fn
= 'mark_boundaries'¶
-
-
class
pipelinex.extras.ops.skimage_ops.
SkimageSegmentationDictToDict
(**kwargs)[source]¶ Bases:
pipelinex.utils.DictToDict
-
module
= <module 'skimage.segmentation' from '/home/docs/checkouts/readthedocs.org/user_builds/pipelinex/envs/latest/lib/python3.6/site-packages/skimage/segmentation/__init__.py'>¶
-
-
class
pipelinex.extras.ops.skimage_ops.
SkimageSegmentationFelzenszwalb
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.skimage_ops.SkimageSegmentationDictToDict
-
fn
= 'felzenszwalb'¶
-
-
class
pipelinex.extras.ops.skimage_ops.
SkimageSegmentationQuickshift
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.skimage_ops.SkimageSegmentationDictToDict
-
fn
= 'quickshift'¶
-
-
class
pipelinex.extras.ops.skimage_ops.
SkimageSegmentationSlic
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.skimage_ops.SkimageSegmentationDictToDict
-
fn
= 'slic'¶
-
-
class
pipelinex.extras.ops.skimage_ops.
SkimageSegmentationWatershed
(**kwargs)[source]¶ Bases:
pipelinex.extras.ops.skimage_ops.SkimageSegmentationDictToDict
-
fn
= 'watershed'¶
-
pipelinex.extras.ops.sklearn_ops module¶
-
class
pipelinex.extras.ops.sklearn_ops.
DfBaseTransformer
(cols=None, target_col=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.sklearn_ops.ZeroToZeroTransformer
-
__init__
(cols=None, target_col=None, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit_transform
(df)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Input samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).
**fit_params (dict) – Additional fit parameters.
- Returns:
X_new – Transformed array.
- Return type:
ndarray array of shape (n_samples, n_features_new)
-
-
class
pipelinex.extras.ops.sklearn_ops.
DfMinMaxScaler
(cols=None, target_col=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.sklearn_ops.DfBaseTransformer
,sklearn.preprocessing._data.MinMaxScaler
-
class
pipelinex.extras.ops.sklearn_ops.
DfQuantileTransformer
(cols=None, target_col=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.sklearn_ops.DfBaseTransformer
,sklearn.preprocessing._data.QuantileTransformer
-
class
pipelinex.extras.ops.sklearn_ops.
DfStandardScaler
(cols=None, target_col=None, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.sklearn_ops.DfBaseTransformer
,sklearn.preprocessing._data.StandardScaler
-
class
pipelinex.extras.ops.sklearn_ops.
EstimatorTransformer
[source]¶ Bases:
sklearn.base.TransformerMixin
,sklearn.base.BaseEstimator
-
class
pipelinex.extras.ops.sklearn_ops.
ZeroToZeroTransformer
(zero_to_zero=False, **kwargs)[source]¶ Bases:
pipelinex.extras.ops.sklearn_ops.EstimatorTransformer
-
__init__
(zero_to_zero=False, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit_transform
(X)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Input samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).
**fit_params (dict) – Additional fit parameters.
- Returns:
X_new – Transformed array.
- Return type:
ndarray array of shape (n_samples, n_features_new)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
class
-
-
class
-
-
class
-
-
class
-
-
class
-
-
-